Spectral and Geometric Properties of k-Walk-Regular Graphs

نویسندگان

  • Miguel Angel Fiol
  • Ernest Garriga
چکیده

Let us consider a connected graph G with diameter D. For a given integer k between 0 and D, we say that G is k-walk-regular if the number of walks of length between vertices u, v only depends on the distance between u and v, provided that such a distance does not exceed k. Thus, in particular, a 0-walk-regular graph is the same as a walk-regular graph, where the number of cycles of length rooted at a given vertex is a constant through all the graph. In the other extreme, the distance-regular graphs correspond to the case k = D. In this talk we discuss some algebraic characterizations of k-walk-regularity, in terms of the local spectrum and pre-distance-polynomials of G. Moreover, some results on the relationship between the diameter and the spectrum, as well as some geometric properties, of walk-regular graphs are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

On k-Walk-Regular Graphs

Considering a connected graph G with diameter D, we say that it is k-walk-regular, for a given integer k (0 ≤ k ≤ D), if the number of walks of length l between vertices u and v only depends on the distance between them, provided that this distance does not exceed k. Thus, for k = 0, this definition coincides with that of walk-regular graph, where the number of cycles of length l rooted at a gi...

متن کامل

On almost distance-regular graphs

Distance-regular graphs have been a key concept in Algebraic Combinatorics and have given place to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the ...

متن کامل

ar X iv : 1 20 2 . 32 65 v 1 [ m at h . C O ] 1 5 Fe b 20 12 On Almost Distance - Regular Graphs ∗

Distance-regular graphs are a key concept in Algebraic Combinatorics and have given rise to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the graph. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007